Jump to content

Deputy for Electrified Aircraft Propulsion Integration Joe Connolly


Recommended Posts

  • Publishers
Posted
grc-2023-c-10506-1.jpg?w=2048

“The goal is to get as many of the wrong ideas out of the way as early as possible. 

“So we’ll come up with some idea, especially on the research side, and sometimes it will seem really brilliant on the napkin or in a conversation with one other person. 

“[When I started working on electric aircraft propulsion,] I was not familiar with all of the electrical ins and outs. I thought power would just be available, and I could use it when I wanted it. [Our concepts had] all these little hiccups — how they get integrated in the real system, how the battery systems are going to interplay, and all the extra safety things that we need to consider—they allowed us to figure out things a little bit earlier and [give us] a broader perspective.

“The key thing is that when you’re working on something that’s really hard, I think the whole expectation is that you’re going to fail. So we try to fail as many times as we can early on. So when we’re getting closer to an actual demonstration, we’re pretty confident that at that point, we’ve talked to the right people, everyone’s on board, and we’re going to have a safe, larger test campaign.

“It’s always better to fail earlier on and learn as much as you can.”

— Joe Connolly, Deputy for Electrified Aircraft Propulsion Integration, Glenn Research Center

Image Credit: NASA / Jef Janis
Interviewer: NASA / Thalia Patrinos

Check out some of our other Faces of NASA.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Lisa Pace knows a marathon when she sees one. An avid runner, she has participated in five marathons and more than 50 half marathons. Though she prefers to move quickly, she also knows the value of taking her time. “I solve most of my problems while running – or realize those problems aren’t worth worrying about,” she said.

      She has learned to take a similar approach to her work at NASA’s Johnson Space Center in Houston. “Earlier in my career, I raced to get things done and felt the need to do as much as possible on my own,” she said. “Over time, I’ve learned to trust my team and pause to give others an opportunity to contribute. There are times when quick action is needed, but it is often a marathon, not a sprint.”

      Official portrait of Lisa Pace.NASA/Josh Valcarcel Pace is chief of the Exploration Development Integration Division within the Exploration Architecture, Integration, and Science Directorate at Johnson. In that role, she leads a team of roughly 120 civil servants and contractors in providing mission-level system engineering and integration services that bring different architecture elements together to achieve the agency’s goals. Today that team supports Artemis missions, NASA’s Commercial Lunar Payload Services initiative and other areas as needed.

      Lisa Pace, seated at the head of the table, leads an Exploration Development Integration Division team meeting at NASA’s Johnson Space Center in Houston. NASA/James Blair “The Artemis missions come together through multiple programs and projects,” Pace explained. “We stitch them together to ensure the end-to-end mission meets its intended requirements. That includes verifying those requirements before flight and ensuring agreements between programs are honored and conflicts resolved.” The division also manages mission-level review and flight readiness processes from planning through execution, up to the final certification of flight readiness.

      Leading the division through the planning, launch, and landing of Artemis I was a career highlight for Pace, though she feels fortunate to have worked on many great projects during her time with NASA. “My coolest and most rewarding project involved designing and deploying an orbital debris tracking telescope on Ascension Island about 10 years ago,” she said. “The engineers, scientists, and military personnel I got to work and travel with on that beautiful island is tough to top!”  

      Pace says luck and great timing led her to NASA. Engineering jobs were plentiful when she graduated from Virginia Tech in 2000, and she quickly received an offer from Lockheed Martin to become a facility engineer in Johnson’s Astromaterials Research and Exploration Science Division, or ARES. “I thought working in the building where they keep the Moon rocks would be cool – and it was! Twenty-five years later, I’m still here,” Pace said.

      During that time, she has learned a lot about problem-solving and team building. “I often find that when we disagree over the ‘right’ way to do something, there is no one right answer – it just depends on your perspective,” she said. “I take the time to listen to people, understand their side, and build relationships to find common ground.”

      Lisa Pace, right, participates in a holiday competition hosted by her division.Image courtesy of Lisa Pace She also emphasizes the importance of getting to know your colleagues. “Relationships are everything,” she said. “They make the work so much more meaningful. I carry that lesson over to my personal life and value my time with family and friends outside of work.”

      Investing time in relationships has given Pace another unexpected skill – that of matchmaker. “I’m responsible for setting up five couples who are now married, and have six kids between them,” she said, adding that she knew one couple from Johnson.

      She hopes that strong relationships transfer to the Artemis Generation. “I hope to pass on a strong NASA brand and the family culture that I’ve been fortunate to have, working here for the last 25 years.”
      Explore More
      3 min read Meet Rob Navias: Public Affairs Officer and Mission Commentator  
      Article 5 days ago 5 min read Heather Cowardin Safeguards the Future of Space Exploration  
      Article 1 week ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
      Article 2 weeks ago View the full article
    • By NASA
      In 1963, Captain Engle was assigned as one of two Air Force test pilots to fly the X-15 Research Rocket aircraft. In 1965, he flew the X-15 to an altitude of 280,600 feet, and became the youngest pilot ever to qualify as an astronaut. Three of his sixteen flights in the X-15 exceeded the 50-mile (264,000 feet) altitude required for astronaut rating.NASA Former NASA astronaut Joe Engle poses in front of an X-15 plane in this Dec. 2, 1965, photo. On June 29, 1965, Engle flew the X-15 to 280,600 feet, becoming the youngest U.S. pilot to qualify as an astronaut.
      The Kansas native flew the X-15 for the U.S. Air Force 16 times from 1963 to 1965. Three times Engle flew an X-15 higher than 50 miles (the altitude required for astronaut rating), officially qualifying him for Air Force astronaut wings and providing him a brief moment for sightseeing at the edge of space.
      “You could glance out and see the blackness of space above and the extremely bright Earth below. The horizon had the same bands of color you see from the shuttle, with black on top, then purple to deep indigo, then blues and whites,” he said.
      Image credit: NASA
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From Sunday, June 22 to Wednesday, July 2, two research aircraft will make a series of low-altitude atmospheric research flights near Philadelphia, Baltimore, and some Virginia cities, including Richmond, as well as over the Los Angeles Basin, Salton Sea, and Central Valley in California.
      NASA’s P-3 Orion aircraft, based out of the agency’s Wallops Flight Facility in Virginia, along with Dynamic Aviation’s King Air B200 aircraft, will fly over parts of the East and West coasts during the agency’s Student Airborne Research Program. The science flights will be conducted between June 22 and July 2, 2025. NASA/Garon Clark Pilots will operate the aircraft at altitudes lower than typical commercial flights, executing specialized maneuvers such as vertical spirals between 1,000 and 10,000 feet, circling above power plants, landfills, and urban areas. The flights will also include occasional missed approaches at local airports and low-altitude flybys along runways to collect air samples near the surface.
      The East Coast flights will be conducted between June 22 and Thursday, June 26 over Baltimore and near Philadelphia, as well as near the Virginia cities of Hampton, Hopewell, and Richmond. The California flights will occur from Sunday, June 29 to July 2.
      The flights, part of NASA’s Student Airborne Research Program (SARP), will involve the agency’s Airborne Science Program’s P-3 Orion aircraft (N426NA) and a King Air B200 aircraft (N46L) owned by Dynamic Aviation and contracted by NASA. The program is an eight-week summer internship program that provides undergraduate students with hands-on experience in every aspect of a scientific campaign.
      The P-3, operated out of NASA’s Wallops Flight Facility in Virginia, is a four-engine turboprop aircraft outfitted with a six-instrument science payload to support a combined 40 hours of SARP science flights on each U.S. coast. The King Air B200 will fly at the same time as the P-3 but in an independent flight profile. Students will assist in the operation of the science instruments on the aircraft to collect atmospheric data.
      “The SARP flights have become mainstays of NASA’s Airborne Science Program, as they expose highly competitive STEM students to real-world data gathering within a dynamic flight environment,” said Brian Bernth, chief of flight operations at NASA Wallops.
      “Despite SARP being a learning experience for both the students and mentors alike, our P-3 is being flown and performing maneuvers in some of most complex and restricted airspace in the country,” said Bernth. “Tight coordination and crew resource management is needed to ensure that these flights are executed with precision but also safely.”
      For more information about Student Airborne Research Program, visit:
      https://science.nasa.gov/earth-science/early-career-opportunities/student-airborne-research-program/
      By Olivia Littleton
      NASA’s Wallops Flight Facility, Wallops Island, Va.
      Share
      Details
      Last Updated Jun 20, 2025 Related Terms
      Airborne Science Aeronautics Wallops Flight Facility View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA / DIP Start
      November 17, 2021 at 10:00 AM ESTEnd
      November 17, 2021 at 12:00 PM EST Workshop Series: What It’s About
      The Digital Information Platform (DIP) workshop series is intended to provide a deeper dive and a closer look at some of the core features being developed by the DIP sub-project under ATM-X.
      These workshops will give insight into DIP development, technology, and assumptions as well as providing a forum for engaging with the DIP team to pose questions and provide feedback on proposed designs. Engagement with the broader aviation community is a critical component to success of the DIP sub-project!
      There will be several workshops within this series spanning a variety of topics. Participants are encouraged to sign up for any workshop topics they feel they could contribute to or provide feedback on.
      Please keep an eye on the DIP homepage, under the upcoming events section, for future announcements of additional workshop topics!
      Workshop #1: DIP Architecture and Data Integration Services
      This workshop will cover DIP architecture and data integration services. Participants will get a look at how the DIP architecture is set-up as well as how data integration services are planned to be hosted on the platform.
      The DIP architecture review is intended to cover how DIP was envisioned and how DIP is being developed to address data needs across the industry. Participants will have a chance to provide feedback on the DIP architecture and gain insight into how one might interface with the DIP to send or receive data.
      The data integration services portion is intended to cover DIP’s technical approach to data integration. As an example implementation, there will be a first look at possible data fusion on the platform , including utilizing NASA’s Fuser, and tailoring for industry data consumers. Descriptions, at a high-level, of input to and output of the Fuser will also be discussed.
      Who Should Register?
      Participants interested in partnering with DIP and registering their service with the DIP platform are highly encouraged to attend this workshop. This is a unique opportunity for the aviation community to provide feedback and input on how this platform is structured to meet your needs.
      Data and service consumers as well as data and service providers are encouraged to attend this workshop to provide their feedback and input for DIP development.
      Participants looking to gain insight into upcoming DIP demonstrations or to learn more about DIP are encouraged to attend this workshop.
      Resources
      Presentation slides Session Recording Request materials via email (arc-dip-ext@mail.nasa.gov) Digital Information Platform
      Digital Information Platform Events
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Explore More
      1 min read Digital Information Platform Library
      Article 10 minutes ago 1 min read DIP Events
      Article 11 minutes ago 1 min read DIP Request for Information (RFI) Information Session
      Article 11 minutes ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Solar System Exploration
      Eyes on the Solar System
      Explore NASA’s History
      Share
      Details
      Last Updated Jun 18, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Digital Information Platform Air Traffic Management – Exploration View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of Photophoretic Propulsion Enabling Mesosphere Exploration concept.NASA/Igor Bargatin Igor Bargatin
      University of Pennsylvania
      We propose to use the photophoretic levitation and propulsion mechanism to create no-moving-parts flying vehicles that can be used to explore Earth’s upper atmosphere. The photophoretic force arises when a solid is heated relative to the ambient gas through illumination, inducing momentum exchange between the solid and the gas. The force creates lift in structures that absorb light on the bottom yet stay cool on the top, and we engineered our plate mechanical metamaterials to maximize this lift force and payload. The levitation and payload capabilities of our plates typically peak at ambient pressures in the 0.1-1000 Pa range, ideal for applications in Earth’s mesosphere and Mars’s low gravity and thin atmosphere. For example, in the Earth’s mesosphere (i.e., at altitudes from ~50 to ~80 km), the air is too thin for conventional airplanes or balloons but too thick for satellites, such that measurements can be performed for only a few minutes at a time during the short flight of a research rocket. However, the range of ambient pressures in the mesosphere (1-100 Pa) is nearly optimal for our plates’ payload capabilities. Phase 2 of the proposal focuses on the scalable fabrication of Knudsen pump structures that will enable missions with kg-scale payloads in the mesosphere as well as trajectory control with 1 m/s velocity control in existing stratospheric balloon vehicles.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NASA Innovative Advanced Concepts (NIAC) Program NIAC Studies Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...